To: Amy Platt/P2/R8/USEPA/US@EPA cc: Subject: ND CEM emissions analysis ## Draft-do not cite or quote Preliminary analysis of North Dakota Power Plant CEM data for 1999 and 2000, and calculated PSD increment consuming emissions suggested by EPA and ND analyses. | Source | Current
24-hr avg
Allowable
Emission
Limit | Source
Type | Baseyear
Emissions | | 1999 Actual Emissions | | | 2000 Actual Emissions | | | Incr. | Incr. | |---------------------------------------|--|----------------|-----------------------|------------------------------|-----------------------|------------------|------------------|-----------------------|----------------|--------------------|------------------------------|----------------------------| | | | | 24 hr | Annual | Max 24
Hour | 90 %
24 Hour | Annual | Max 24
Hour | 90%
24 Hour | Annual | EPA
Prop.
2yr @
90% | ND
Allow-
ables | | Antelope
Valley Units
1 and 2 | Combined limit U1&2 3845 lb/hr ¹ | PSD | NA | NA | 4350
lb/hr | 3620
Ib/hr | 15516
tons/yr | 4940 lb/br | 3291
lb/hr | 13047
tons/yr | 3598
lbs/hr | 3845
lbs/hr | | Coyote Sta | 5335 lb/hr | PSD | NA | NA | 5799
lb/hr | 5126
lb/hr | 20040
ton/yr | 5115 lb/hr | 4655
ib/hr | 14521
ton/yr | 5077
lb/br | 5335
lbs/br | | Coal Creek
Unit 1 | 6336 lb/hr ¹ | PSD | NA | NA | 7744
lb/hr | 7194
Ib/hr :: | 23551
ton/yr | 5287 lb/hr | 4195
lb/br | 14332
ton/yr | 6814
lb/hr | 6336 | | Coal Creek
Unit 2 | 6336 lb/hr ^t | PSD | NA | NA | 7175
lb/hr | 6891
lb/hr | 26192
ton/yr | 4608 lb/hr | 3552
lb/hr | 12817
ton/yr | 6775
lb/hr | ibs/br
6336
lbs/br | | MR Young
Unit 1 | 7500 lb/hr | Baseline | 7500
lb/hr² | 32850
tor/yr ² | 7088
lb/hr | 5575
lb/nr | 19481
ton/yr | 7082 lb/br | 5599
lb/hr | 18095
ton/yr | 03 | 01 | | M R Young
Unit 2 | 5635 lb/hr | Baseline | 5635
lb/hr² | 24682
tor/yr² | 7535
lb/hr | 6161
lb/hr | 21863
ton/yr | 6838 lb/br | 6089
lb/hr | 21134 | 493 | Ö | | Leland Olds
Unit 1 | 6930 lb/lur | Baseline | 4774
lb/hr | 8551
tar/yr | 5956
Ib/hr | 4891
(b/br | 16802
ton/yr | 5970 lb/tur | 4965. | 16864 | 157 | 2156 | | eland Olds
Juit 2 | 13668 lb/hr | Reseline | 9968
Ih/hr | 13094
ton/yr | 11623
Ib/hr | 10282
lb/hr | 33306
ton/yr | 11796
lb/hr | 9877 | 28587 | 16√6r ³ 211 | 16/hr ²
3700 | | leskett 1&2
incomplete
PM data) | 2969 lb/hr | Baseline | 2872
lb/hr | 5956
ton/yr | | | 2208
ton/yr | | 1 | ton/yr 1778 ton/yr | O ₂ | O ₃ | | Source | Current 24-br avg Allowable Emission Limit | Source
Type | Baseycar
Emissions | | 1999 Actual Emissions | | | 2000 Actual Emissions | | | Incr. | Incr. | |--------------------|--|----------------|-----------------------|----------------|-----------------------|-----------------|------------------|-----------------------|----------------|-----------------|------------------------------|-----------------------| | | | | 24 hr | Annual | Max 24
Hour | 90 %
24 Hour | Annual | Max 24
Hour | 90%
24 Hour | Amual | EPA
Prop.
2yr @
90% | ND
Allow-
ables | | Stanton
Unit 1 | 4416 lb/hr | Baseline | 4416
lb/hr | 8018
ton/yr | 3078
lb/hr | 2371
lb/hr | 8241
tons/yr | 3047
lb/hr | 2523 | 7017
ton/yr* | 0 | 0 | | Stanton
Unit 10 | Included in
Unit 1 total | PSD | NA | NA | 357
lb/hr | 327
lb/hr | 1241
tons/yr* | 402
1b/br | - 307
lb/hr | 972
lon/yr* | 320
lb/hr | 0 | | Total | | | · | | | 3. | | | | | 23445
lb/hr | 27708
lb/hr | 1) 3- hour rolling average limit 2) Full allowable emissions were assumed by ND in 1978-1979 baseyears 4)Sum of reported CEM data. May understate annual emissions due to missing CEM data. KG 6/8/01 ³⁾ Credit applied using ND's calculation of baseyear emissions. (The State's calculation does not seem to reflect emissions growth in these sources since baseline date). Totals in some cases reflect actual emissions exceeding allowable limits. To: Richard Long/P2/R8/USEPA/US@EPA, Larry Svoboda/P2/R8/USEPA/US@EPA, Douglas Latimer/P2/R8/USEPA/US@EPA, Megan Williams/P2/R8/USEPA/US@EPA, Ron Rutherford/ENF/R8/USEPA/US@EPA CC: Subject Effect of controls at MR Young Station on PSD Class 1 Increment I reran North Dakota's original PSD increment modeling analysis to estimate the effect of emission reductions at Milton R Young Station on the Class1 areas in ND and MT where violations of the SO2 increment have been predicted. This analysis relied on North Dakota's assumption that MRY emitted "allowable emissions" of 37,791 tons per year in the 1977-1978 baseline period. The only emission changes at MRY in subsequent years that would consume PSD increment are those exceeding this level. Conversely, only emission reductions greater than 37791 tons/year would expand, or increase, the amount of available PSD increment. An emission limit of 0.10 lbs/MMBTU SO2 for both units at MRY would result in an a reduction in allowable emissions of 53,000 tons/year. A reduction of 53,000 tons/year would provide 15,214 ton/year of increment expanding emissions. Thus, the results in the attached table reflect MRY SO2 increment expansion "credits" of 15,214 ton/year. Because I used North Dakota modeling assumption concerning MRY emissions, the results probably underestimate the increment benefits MRY controls would have. CEM data for MRY shows that the facilities actual emissions exceeded the stated allowable emissions in recent years, while other information indicate that 1977-1978 baseline emissions may have been overestimated. EPA will be reanalyizing the Class 1 increment in North Dakota using updated information on MRY and other major sources later this year. If necessary, I can rerun the effect of MRY controls at that time. The attached table shows that both the number of violations and PSD increment concentrations are reduced in all 4 Class 1 areas. Because existing violations are not as severe at Medicine Lake Wildemess and Ft. Peck Reservation, the MRY reductions provide relatively large improvements in these areas. The MRY reductions did not completely mitigate the violations in these areas. However, additional SO2 emission reductions (beyond the 15,214 tons modeled) from MRY or other nearby source of 1700 tons/year would eliminate the PSD violations at MLWA, while an additional 8500 tons would eliminate violations at FPIA. Table 1. Calpuff modeling analysis showing the effect of feasible SO2 reductions at Milton R Young Station on 24-hour average PSD exceedences in 4 Class 1 areas. | PSD Class 1 Area | Original N
(ug/m3) | Aodeling Re | sults ¹ | Results wi | itrolled | | |-------------------------------|-----------------------|-------------------|--------------------|---------------|-------------------------------|-------------------| | | 24 hr
hìgh | 24 hr
2nd high | Number
Exceeds | 24 hr
high | 24 hr
2 nd high | Number
Exceeds | | T. Roosevelt Nati
Park, ND | 17.2 | 12.4 | 19 8 8 - 1 | 16.3 | 11.4 | 17 | | Lostwood Wildemess,
ND | 8.3 | 7.2 | 7 | 7.2 | 5.8 | б | | Medicine Lake W.A. MT | 9.1 | 6:0 | 3 | 7.8 | 5.1 | 23 | | Fort Peck Reservation,
MT | 11.0 | 6.4 | 3 | 10.5 | 5.5 | 24 | - 1. Data extracted from North Dakota Dept Health 5/24/99 Calpuff modeling analysis of PSD Class 1 increment consumption. Results reflect ND's assumption that MRY Station currently has no increment consuming emissions (i.e. MRY is a baseline source). - 2.Both units at MRY assumed controlled to 0.1 lbs/MMBTU SO2. Increment is expanded (i.e. created) due to emission reductions of 15,214 tons/year below 1978 baseline levels. - 3. Additional emission reductions of 1700 tons/year from MRY or other nearby source would eliminate the PSD Class 1 violation at MLWA. - 4.Additional emission reductions of 8500 tons from MRY or other nearby source would eliminate the PSD Class 1 violations at FPR. ## **ATTACHMENT 2** From the Energy Information Agency's Annual Energy Review Data http://tonto.eia.doe.gov/aer/index2000.htm Data is for Contiguous U.S. | Summer Peak Load | Annual Electricity Consumption | |------------------|--------------------------------| | (millions of kW) | billion kW-h | | 1986 476,983.00 | 2,487.31 | | 1987 496,173.00 | 2,572.13 | | 1988 529,460.00 | 2,704.25 | | 1989 523,082.00 | 2,784.30 | | 1990 546,000.00 | 2,808.15 | | 1991 552,176.00 | 2,825.02 | | 1992 549,211.00 | 2,797.22 | | 1993 581,264.00 | 2,882.52 | | 1994 585,844.00 | 2,910.71 | | 1995 620,871.00 | 2,994.53 | | 1996 616,790.00 | 3,077.44 | | 1997 637,677.00 | 3,122.52 | | 1998 660,293.00 | 3,212.17 | | 1999 681,449.00 | 3,173.67 | | 2000 685,816.00 | 3,009.51 | Rate of Growth in Peak Summer Load 1986 to 2000 44 % Rate of Growth in Annual Electricity Consumption 1986 to 2000 21 %